
Programmers' Technical Reference
Guide for Titanium

Kristóf Szabados

Version 8.2.0, 2022-05-04

Table of Contents
1. About the Document . 2

1.1. Purpose . 2

1.2. Target Groups . 2

1.3. Typographical Conventions . 2

2. Adding a new Code Smell . 3

2.1. Adding the new Code Smell class . 3

2.1.1. The location of the new Code Smell class . 3

2.1.2. The description of the new Code Smell class . 3

2.1.3. The superclass of the new Code Smell class . 3

2.1.4. The code of the new Code Smell class . 4

2.2. Register the new Code Smell . 5

2.2.1. Register the new Code Smell Type . 5

2.2.2. Add the new Code Smell to semantic problem related map. 5

2.2.3. Register the new Problem Type Preference . 6

2.2.4. Initialize the preference of the Code Smell. 6

2.2.5. Refresh Markers Preference Page. 7

2.3. Refresh Titanium documentation. 10

3. Titanium metrics . 11

3.1. Overview . 11

3.2. Metrics. 11

3.3. MetricData . 12

3.4. ModuleMetricWrapper . 12

3.5. MetricsView . 12

3.6. TopRiskView . 12

3.7. Interaction with the titan designer . 12

4. Graph generation and display. 13

4.1. The generation of graphs on the UI . 13

4.2. The generation of graph on the headless interface . 14

4.3. How graph data is obtained? . 15

4.3.1. Obtaining data for module graph . 15

4.3.2. Obtaining data for component graph . 16

5. Graph clustering . 17

5.1. Algorithms . 17

5.1.1. Clustering by folder name . 17

5.1.2. Clustering using regular expressions. 17

5.1.3. Clustering by module name . 17

5.1.4. Automatic clustering . 17

5.2. Running the algorithms . 18

5.3. Connection with TITAN designer . 18

6. Titanium DAG layout algorithm . 19

6.1. Basic idea . 19

6.2. Versions. 19

6.3. Display. 19

7. Searching for parallel paths and cycles . 20

7.1. Finding parallel paths . 20

7.2. Finding circles . 20

8. Code smell table merging . 21

8.1. Algorithm . 21

8.2. Limitation. 21

9. References . 22

Abstract

This document describes detailed information on writing components of executable test suites for
the TITAN TTCN-3 Toolset.

Copyright

Copyright (c) 2000-2022 Ericsson Telecom AB.
All rights reserved. This program and the accompanying materials are made available under the
terms of the Eclipse Public License v2.0 that accompanies this distribution, and is available at
https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html.

Disclaimer

The contents of this document are subject to revision without notice due to continued progress in
methodology, design and manufacturing. Ericsson should have no liability for any error or damage
of any kind resulting from the use of this document.

1

https://www.eclipse.org/org/documents/epl-2.0/EPL-2.0.html

Chapter 1. About the Document

1.1. Purpose
The purpose of this document is to provide detailed information on writing components, for
example, test ports, and so on, for executable test suites.

1.2. Target Groups
This document is intended for programmers of TTCN-3 test suites with information in addition to
that provided in the TITAN User Guide [3]. It is recommended that the programmer reads the TITAN
User Guide before reading this document.

1.3. Typographical Conventions
This document uses the following typographical conventions:

Bold is used to represent graphical user interface (GUI) components such as buttons, menus, menu
items, dialog box options, fields and keywords, as well as menu commands. Bold is also used with
"+" to represent key combinations. For example, Ctrl+Click

The character "/"" is used to denote a menu and sub-menu sequence. For example, File / Open.

Monospaced font is used represent system elements such as command and parameter names,
program names, path names, URLs, directory names and code examples.

Bold monospaced font is used for commands that must be entered at the Command Line Interface
(CLI).

2

Chapter 2. Adding a new Code Smell
This chapter guides you through the world of Code Smells. It contains a tutorial like description on
how to add a new Code Smell, which are the important things you have to pay attention to, and
why. A concrete example is provided to help understanding the concepts and usage.

2.1. Adding the new Code Smell class

2.1.1. The location of the new Code Smell class

The new code smell-s class is actually a code smell spotter implementation. That is why you have to
add the new class in the

package org.eclipse.titanium.markers.spotters.implementation .

The name of the class has to refer to the role of the code smell.

In this description we study about Code Smells using a concrete code smell, which is implemented in
the class named Goto.java.

2.1.2. The description of the new Code Smell class

Do not forget to add a description about the role of your new code smell. This should contain your
id as author.

In the Goto example code smell a description could be:

/**

* This class marks the following code smell:
* The code contains goto statements, which is not recommended.
* @author <XY_id>

*/

2.1.3. The superclass of the new Code Smell class

The new Code Smell has to extend the class BaseModuleCodeSmellSpotter. This class is an abstract
class in the package org.eclipse.titanium.markers.spotters .

Example:

public class Goto extends BaseModuleCodeSmellSpotter { ... }

3

2.1.4. The code of the new Code Smell class

• It is recommended for your code smell class to have as private attribute named ERROR_MESSAGE,
this containing the message which should appear to the user of the Code Smell, when the Code
Smell is detected.

Example:

private static final String ERROR_MESSAGE = "Usage of goto and label statements is
not recommended ";

• The constructor of the Code Smell should contain super(CodeSmellType.<Code_Smell_Id>); as first
row, where Code_Smell_Id is choosen by the author, and will be used in registering a the new
code smell. Information on this id is in section Register the new Code Smell Type.

Example:

public Goto() {
 super(CodeSmellType.GOTO);
}

• As the code smell-s superclass, the BaseModuleCodeSmellSpotter has two abstract methods, we
have to override these. The method getStartNode() will have to return the list of AST nodes on
which the spotter will work, on which we are interested to analyze the appearance of our code
smell.

Example:

@Override
public List<Class<? extends IVisitableNode>> getStartNode() {
 List<Class<? extends IVisitableNode>> ret =new ArrayList<Class<? Extends
IVisitableNode>>(1);
 ret.add(Goto_statement.class);
 return ret;
}

• The method process(IVisitableNode node, Problems problems) has to be overriden as well. The
actual work for matching the code smell is done here. This method would surely contain a
problems.report(s.getLocation(), ERROR_MESSAGE); row.

Example:

4

@Override
public void process(IVisitableNode node, Problems problems) {
 if (node instanceof Goto_statement) {
 Goto_statement s = (Goto_statement) node;
problems.report(s.getLocation(), ERROR_MESSAGE);
 }
}

2.2. Register the new Code Smell

2.2.1. Register the new Code Smell Type

The CodeSmellType enum in package org.eclipse.titanium.markers.types contains all the Code Smell
Types as instances. We have to add the new Code Smell, using the <Code_Smell_Id> which we have
chosen in the constructor of our code smell’s class.We have to add a short description of the
problem detected by our code smell, and we must specify three numeric parameters as well:

1. the minimum time needed to improve the detected code smell;

2. the average time needed to improve the detected code smell;

3. the maximum time needed to correct on instance of the detected code smell.

Example:

package org.eclipse.titanium.markers.types;
public enum CodeSmellType implements ProblemType{
 ...
 GOTO("Goto", 1.0, 5.5, 26.0)
 ...
}

2.2.2. Add the new Code Smell to semantic problem related map

The class StaticData has the newSpotters() method which returns an unmodifiable map. This map
contains the code smell spotters,that are related to each semantic problem. The map’s key is the
relevant instance of the CodeSmellType, the value is new instance of the code smell class.

This information is used to gather the active code smells spotters, for a code smell type, during the
analysis.

Example:

5

package org.eclipse.titanium.markers.spotters.implementation;
class StaticData {

 public static Map<CodeSmellType, BaseModuleCodeSmellSpotter[]> newSpotters() {
 ...
 m.put(CodeSmellType.GOTO, new BaseModuleCodeSmellSpotter[] { new Goto() });
 ...
 return Collections.unmodifiableMap(m);
 }
}

2.2.3. Register the new Problem Type Preference

The ProblemTypePreference contains an item related to each Code Smell. This enum is going to
serve in the process of setting the preferences of a Code Smell. It also contains a short description
about the effect of the related Code Smell. This description going to appear when the user browses
in the Titanium Preferences / Code Smell window. Try to be short and very clear.

Example:

package org.eclipse.titanium.preferences
enum ProblemTypePreference

public enum ProblemTypePreference {
 ...
 GOTO("Report the usage of label and goto statements",
EnumSet.of(CodeSmellType.GOTO)),
 ...
}

2.2.4. Initialize the preference of the Code Smell

All Code Smells have a default preference. This must be given in the class PreferenceInitializer.

There are three kind of preferences: ERROR, WARNING, IGNORE. If ERROR is set, the detecting of
the referred Code Smell is going to occur an error. In the case of WARNING the user is going to get a
warning message if the referred Code Smell is detected. IGNORE means that the user is not going to
receive any sign, even if the Code Smell exists.

Example:

6

package org.eclipse.titanium.preferences;
class PreferenceInitializer

 public final void initializeDefaultPreferences() {
 IPreferenceStore preferenceStore = getPreference();
 ...
 preferenceStore.setDefault(ProblemTypePreference.GOTO.getPreferenceName(),
 GeneralConstants.IGNORE);
 ...
}

2.2.5. Refresh Markers Preference Page

The class MarkersPreferencePage is the place where users can set the severity of each code smell.
This page also contains the explanation on the program code containing the specific Code Smell,
could be written more clearly, correct, why is it important to pay attention on it. This explanation
appears to the user in the Titanium Preferences / Code Smell window, when the mouse is set above
the short description of the code smell.

Example:

package org.eclipse.titanium.preferences.pages;
class MarkersPreferencePage

static {
 Map<ProblemTypePreference, String> m = new EnumMap<ProblemTypePreference, String>
 (ProblemTypePreference.class);

 ...
 m.put(ProblemTypePreference.GOTO,
 "In almost all cases the usage of goto should be forbidden as it can very
easily
 breaks the principles of structured/well designed source code.");
 ...

}

The function createFieldEditors() is responsible for creating the fields. Only the fields created in this
function going to be seen by the user in the Titanium Preferences / Code Smell window. Be sure you
put the new field in the block corresponding to the type of problem detected by your Code Smell.

Example:

7

package org.eclipse.titanium.preferences.pages;
class MarkersPreferencePage

protected void createFieldEditors() {
 ...

 addField(b1);
 {
 ...
 sec.setText("Potential Structural problems");
 sec.setFont(fonts.getBold(""));
 Composite comp = new Composite(sec, 0);
 comp.setLayoutData(new GridData(GridData.FILL_HORIZONTAL));
 comp.setLayout(new FillLayout(SWT.VERTICAL));
 createField(comp, ProblemTypePreference.GOTO);
 ...
 }
}

Using parameters

It is also possible to ask for parameters from the user on this page. In which case the parameter
must also be a preference setting, and have a place on the preference window, preferably next to its
main option. Please don’t forget to provide a default value for each parameter, so that the code
smell can work out of the box if needed.

In the following example we would like to have a minimum length for identifiers. This threshold
has a default value, but it should be changeable by the user. Figure 1 shows a sample window,
consisting of all the parameters which are responsible for the minimum lengths of the identifiers.
The default value is 4, but the user can change the threshold values any time here.

8

Figure 1. Preferences window with user parameters

Initializing process of a parameterized code smell looks like the previously shown code smells,
however there are some differences about the GUI parameters.

To define the parameters, the PreferenceInitializer must be completed.

Example:

package org.eclipse.titanium.preferences;
class PreferenceInitializer

preferenceStore.setDefault(
 PreferenceConstants.IDENTIFIER_EXCESSIVELY_SHORT_TEMPLATE_SIZE, 4);

Constant need to be added to PreferenceConstants.

Example:

9

package org.eclipse.titanium.preferences;
class PreferenceConstants

public static final String IDENTIFIER_EXCESSIVELY_SHORT_TEMPLATE_SIZE =
 "IDENTIFIER_EXCESSIVELY_SHORT_TEMPLATE_SIZE";

2.3. Refresh Titanium documentation
The last, important step is to refresh the documentation. In the chapter Titanium Preferences / Code
Smell Preferences are presented several Code Smell categories. Search for the category your Code
Smell belongs in the Titanium Preferences/Code Smell window, use the short description of the code
smell from the Preferences/Code Smell window l to introduce the new description.

Example:

In docs/Titanium_Description

Titanium Preferences / Code Smell Preferences / Potential structural problems

• Report the usage of label and goto statements: goto statements and labels usually indicate
incorrect programing practices. Developers are encouraged to used elements of structured
programming practices.

10

Chapter 3. Titanium metrics

3.1. Overview
One of the core features of Titanium is the code metrics for TTCN-3 projects. Code metrics (like
block nesting of a test case, or cyclomatic complexity of a function) are indicators of code quality,
that can tell the user about which are the complex modules of a project, and may serve as a lead in
refactoring by showing overly complicated, bloated parts of the project.

Calculating metrics is planned to happen rarely, only when the user opens explicitly an eclipse view
that requires the metrics, thus it was not designed to be lightweight.

The code of the implementation resides in the org.eclipse.titanium.markers and its submodules. A
rough overview of some notable classes and its associations is depicted below.

Figure 2. Associations of notable classes related to the metrics package

3.2. Metrics
Metrics are similar to the code smell spotters in the marker package. Their purpose is to measure a
TTCN-3 entity (e.g. count the length of a function definition). They can contain local state (to ensure
flexibility), but after initialization this state should not be changed, so their measure method is
intended to serve a stateless behavior.

11

3.3. MetricData
This is the core class of the package that controls the execution of the metrics, stores the results of
them, calculates its statistics and risk factors. It is immutable, in fact a snapshot of the project’s
state and quality at the time of creating the MetricData object. As a result, it is quite a heavyweight
object, which should be created sparingly and cached when possible.

Note that constructing an instance requires locking the project to prevent modifications during the
measurements. This locking is handled internally.

3.4. ModuleMetricWrapper
During development it was an important aspect to ensure an easy-to-use interface for the graph
package, and also that the graph package and the MetricData class is not tightly coupled. The
ModuleMetricWrapper class is the façade that solves this.

3.5. MetricsView
This view gives the user an overview of the project from the point of view of the metrics. The
project is explorable via a tree view, where the user can see all the metrics, and under those nodes
the entities related to these metrics, and also the detailed results of the metrics.

The view uses a MetricData instance as its data source, constructed when the view is opened.

3.6. TopRiskView
This view is designed to show the users the modules that are potentially dangerous according to the
metrics, that is, that have bad quality index for the metrics. When using this view, the user can
select which metrics to count in the quality index, and than we list the modules of the project
ordered by this quality index (along with the details of the metrics).

As here we are interested only in the modules, this class is not in direct association with a
MetricData instance, but rather uses a ModuleMetricWrapper to show the metric details.

3.7. Interaction with the titan designer
This module has a single point where the designer is directly touched. The MetricData instance must
access to the AST of the project, so it can execute the metrics on the entities that should be
measured. This happens in the measure() method of the MetricData, where the module nodes are
queried from the ProjectSourceParser associated with the project that we measure.

On the other hand, the metrics themselves rely on the methods of the AST nodes, and AST traversal,
so this should be also considered as part of the interface.

12

Chapter 4. Graph generation and display

4.1. The generation of graphs on the UI
The graph generation can be basically divided into two parts:

1. The generation of component graph

2. The generation of module graph

These two finally use the same methods for the display, but the graph creation is totally different.

Clicking in the appropriate menu entry first launches an AbstractHandler, this can be
ModuleGraphAction or ComponentGraphAction according to the claimed graph. These classes only do a
search for the appropriate graph drawing window, set a reference to the opened window, or create
a new window if needed. After opening the window the EditorPart takes the control. Both the
component and module windows are inherited from GraphEditor class, this class implements basic
EditorPart methods, and besides it creates the UI elements needed for showing the graph (only the
common UI elements are built here).

For the graph building (generation) we use GraphGenerator, this class implements a frame how a
generator should look like: It can generate graph, return the generated graph (this method is
synchronized with the generation), and it can refresh the graph searching for changes. The most
important method here is createGraph() which is protected, and abstract.. According to the claimed
graph we make instance of the appropriate subclass, thus all the differences are solved in the graph
drawing. The two present subclasses of GraphGenerator are ComponentGraphGenerator and
ModuleGraphGenerator.

After this step the editor window takes back the control, and displays the graph through JUNG API.
Because of synchronization issues the editor doesn’t wait for the generator, the generator can set a
new graph and thus launch the process of display through a method call on the inherited
SetGraph() method. Here the most important steps are the following:

1. Handling of DrawArea (this is a Swing component that displays the graph).

2. Handling of SatelliteView (this is handled through a reference).

As Jung is compatible with Java AWT (it finally returns a subclass of AWT Component), we add
everything to these two swing objects.

To make a Component from our generated graph we use GraphHandler class. This class provides a
quite complex functionality, let’s see the main ones:

1. Visualizing a graph (make a drawable object from inner representation)

2. Save the graph to an output file (pajek or image)

3. Change the graph’s layout

4. Set custom rendering for graph nodes (font style, node shape, node colour,…)

5. Other, less important lightweight UI features.

13

Finally the visualized graph is added to the DrawArea, and SatelliteView in the GraphEditor class (this
class calls the GraphHandler).

Figure 3. The 5 steps of graph drawing

4.2. The generation of graph on the headless interface
Compared to the UI graph building headless building is simplier. SaveModuleGraph or
SaveComponentGraph launches the generation. The called application looks for all projects in your
workspace, and generates a graph for each TTCN project.

To generate graph an appropriate GraphGenerator subclass is instanced and called
(ModuleGraphGenerator or ComponentGraphGenerator). This class generates the inner representation of
the claimed graph.

After this the application calls the SaveGraphToPajek method of GraphHandler, this method is static,
therefore it needs no instance to build up. This call takes as parameter the graph, which will be
claimed from the generator through getGraph() call (note that this is a significant difference from
the UI case). As this method is synchronized with the generation the call will only return after the
generation is done, so this call maybe longer. After all the GraphHandler writes out the graph to the
disk in Pajek .net format. If there was no problem during the run the application returns here, and
the run terminates.

14

Figure 4. Generating graph on headless interface

4.3. How graph data is obtained?
In this section we are going to speak about the connection among Titanium, and TITAN designer. As
the graphs always represent the current state of the TTCN code naturally this connection is
unavoidable. Just like in the former sections we are going to discuss two cases, which are now quite
different:

1. Module graph

2. Component graph

Both generations are implemented in the GraphGenerator classes, more precisely at the
createGraph() method.

4.3.1. Obtaining data for module graph

Module graph data can be obtained a bit easier. The following steps are done in the appropriate
method:

1. Creating an instance of ProjectSourceParser

2. Checking whether it is up to date

3. Analyzing if it wasn’t up to date

4. Iterating through all the visited projects, here visited project are got through
ProjectBasedBuilder

5. Getting a ProjectStructureDataCollector object through GlobalProjectStructureTracker object
for the current project

15

6. Get knownModules, missingModules and importations from the collector. From these values the
graph can be directly generated

4.3.2. Obtaining data for component graph

For component graph we need to use a bit more complicated interface. Up to step 4 we do the same
as at generating module graph. After this we do the following steps:

1. Iterate through knownModules

2. Override the accept() method of the current module by a new ASTVisitor

3. Check whether the visited node is a Component

4. If it was a component then we get its Identifier, otherwise we return

5. We can create the base node through the datas provided in the Identifier

6. We get the extensions and the extension attributes through the original Component_Type object

7. We override there the accept() method again, and we work with Reference objects only
(otherwise we return)

8. Build up a new node through the Reference’s Identifier, and add an edge from the first node to
the second one.

16

Chapter 5. Graph clustering

5.1. Algorithms
The classes of the implemented algorithms are all subclasses of BaseCluster. The algorithms are the
following:

5.1.1. Clustering by folder name

This algorithm is implemented in the FolderNameCluster class.

We recursively check the Resources beginning from the project root directory.

If the currently checked resource is a directory, we create a cluster and continue the recursive
search.

If the currently checked resource is a file, we extract the contained module and assign it to the
appropriate cluster.

5.1.2. Clustering using regular expressions

This algorithm is implemented in the RegexpCluster class.

We iterate through the nodes, and check which regular expressions match the module name.

Then we create the clusters by iterating through the nodes again.

If no matches were found for a given node, then we assign that node to the cluster that contains the
nodes which have no matches.

If one match was found, we assign the node to the cluster belonging to the matching regular
expression.

If more than one match was found, we display them, and the clustering fails.

5.1.3. Clustering by module name

This algorithm is implemented in the ModuleNameCluster class.

First, we create the clusters by iterating through the nodes and splitting the module names
according to the settings. A cluster is created for every name segment.

Then we iterate through the nodes again and choose the narrowest cluster the module belongs to,
because we want the nodes to belong to only one cluster.

5.1.4. Automatic clustering

This algorithm is implemented in the AutomaticCluster class.

This clustering uses a similar algorithm to the one in the article here: S. Mancoridis, B. S. Mitchell, C.

17

Rorres, Y. Chen and E. R. Gansner, "Using automatic clustering to produce high-level system
organizations of source code," Proceedings. 6th International Workshop on Program
Comprehension. IWPC'98 (Cat. No.98TB100242), Ischia, Italy, 1998, pp. 45-52, doi:
10.1109/WPC.1998.693283. Available: https://www.cs.drexel.edu/~spiros/papers/iwpc98.pdf (2020-11-
09)

The changes are documented in the javadoc of the class.

5.2. Running the algorithms
Running the algorithm is simple. We create the appropriate clustering object and call its
run(monitor, group) method.

The monitor parameter is the progress monitor. The group parameter is a Boolean value which tells
the tool whether only the clusters are needed, or we create a graph from the clusters.

If we want to display the results, we simply override the drawGraph() method as it will be called at
the end of the run method.[1]

It is possible to circumvent the run method and create and obtain the clustering using the public
interface (for more information consult the javadoc), but using the above method is much simpler.

5.3. Connection with TITAN designer
Only folder name based clustering uses TITAN directly. This algorithm uses a ProjectSourceParser
object to obtain module paths, thus it can create a directory hierarchy.

[1] These overrides are already done at ModuleGraphEditor class

18

https://www.cs.drexel.edu/~spiros/papers/iwpc98.pdf

Chapter 6. Titanium DAG layout algorithm
The layout algorithm, which creates a tree-like layout for directed acyclic graphs in the jung graph
library, was inefficient and could not handle cycles in the graph, so we created our own.

6.1. Basic idea
Since strongly connected components (cycles in this case) are not common in a module or
component graph, it makes sense to search for nodes that are not in a cycle.

So we begin by creating a topologic ordering of the nodes by choosing the node that has no arcs
going into it (in-degree = 0). We "delete" this node, and decrease its neighbours’ in-degree.

If the next node (ordered by in-degree) does not have 0 in-arcs, then it is in a cycle. We find this
cycle using DFS.

6.2. Versions
There are two versions. Basically the topologic order can be created by finding sources (no in-arcs)
or by finding sinks (no out-arcs). These are implemented in the TitaniumDAGLayoutAlgorithm and
TitaniumDAGLayoutReverseAlgorithm classes respectively.

The obtained order of the nodes and the level at which they will be drawn differ. If we search for
sinks, modules that are not importing other modules come first. If we search for sources, modules
that are not imported come first.

6.3. Display
The display is done through TitaniumDAGLayout class. It implements the Layout interface of Jung.
After this everything works the same way as any other Jung layout.

19

Chapter 7. Searching for parallel paths and
cycles
The module and component graphs of a project should be trees. A tree does not contain cycles and
parallel paths.

7.1. Finding parallel paths
The tool implemented in CheckParallelPaths finds the arcs that are contained in parallel paths from
a given source node or from every node.

We use a modified DFS algorithm. If we find an already checked node, then we have either found a
parallel path or a cycle. We check if it is not a cycle and put the arcs of the two parallel paths in a
set.

This method does not find every parallel path, but every arc contained in a parallel path will be in
the set.

7.2. Finding circles
CircleCheck class implements a circle searching algorithm for graphs. It can be instanced by
providing a Jung graph. After this IsCyclic method returns whether the graph contained any circle.
And getCircles method returns all the found circles.

Note that this class may not find all circles, however it finds if there is any circle for sure. Finding
all circles is quite a difficult exercise, as circles may even overlap, which causes difficulties.

20

Chapter 8. Code smell table merging
For the project analysis we export code smells to an excel table. This table will only contain the
current code smells. We would like to examine how the figures changed in time.

8.1. Algorithm
The merging algorithm is implemented in MergeExportedMarkerTables.

First we collect the dates and code smell names contained in the different files. This way, if a code
smell name changes, the change will be handled. We can also merge tables containing more than
one column.

Then we iterate through the found dates in ascending order and write the appropriate information
to a new excel table.

8.2. Limitation
The .xls format used by the jxl library only supports 255 columns in a table.

21

Chapter 9. References
• [1] Installation guide for TITAN TTCN-3 Test Executor

• [2] Installation Guide for TITAN Designer and TITAN Executor for the Eclipse IDE

• [3] User Guide for TITAN TTCN-3 Test Executor

• [4] Programmers Technical Reference for TITAN TTCN-3 Test Executor

• [5] Release Notes for TITAN TTCN-3 Test Executor

• [6] TTCN-3 Style Guide

• [7] TTCN-3 Naming Convention

• [8] Methods for Testing and Specification (MTS);The Testing and Test Control Notation version
3.Part 1: Core Language European Telecommunications Standards Institute. ES 201 873-1
Version 4.5.1, April 2013

• [9] Methods for Testing and Specification (MTS);The Testing and Test Control Notation version
3.Part 4: TTCN-3 Operational Semantics European Telecommunications Standards Institute. ES
201 873-4 Version 4.4.1, April 2012

• [10] Methods for Testing and Specification (MTS);The Testing and Test Control Notation version
3.Part 7: Using ASN.1 with TTCN-3 European Telecommunications Standards Institute. ES 201
873-7 Version 4.5.1, April 2013

22

https://gitlab.eclipse.org/eclipse/titan/titan.core/blob/master/usrguide/installationguide/installationguide.adoc
https://gitlab.eclipse.org/eclipse/titan/titan.EclipsePlug-ins/blob/master/org.eclipse.titan.help/docs/Eclipse_installationguide/Eclipse_installationguide.adoc
https://gitlab.eclipse.org/eclipse/titan/titan.core/blob/master/usrguide/userguide/UserGuide.adoc
https://gitlab.eclipse.org/eclipse/titan/titan.core/blob/master/usrguide/referenceguide/ReferenceGuide.adoc
https://gitlab.eclipse.org/eclipse/titan/titan.core/blob/master/usrguide/releasenotes/releasenotes.adoc
https://www.etsi.org/deliver/etsi_es/201800_201899/20187310/04.05.01_60/es_20187310v040501p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187310/04.05.01_60/es_20187310v040501p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187310/04.05.01_60/es_20187310v040501p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187304/04.04.01_60/es_20187304v040401p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187304/04.04.01_60/es_20187304v040401p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187304/04.04.01_60/es_20187304v040401p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187307/04.05.01_60/es_20187307v040501p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187307/04.05.01_60/es_20187307v040501p.pdf
https://www.etsi.org/deliver/etsi_es/201800_201899/20187307/04.05.01_60/es_20187307v040501p.pdf

	Programmers' Technical Reference Guide for Titanium
	Table of Contents
	Chapter 1. About the Document
	1.1. Purpose
	1.2. Target Groups
	1.3. Typographical Conventions

	Chapter 2. Adding a new Code Smell
	2.1. Adding the new Code Smell class
	2.1.1. The location of the new Code Smell class
	2.1.2. The description of the new Code Smell class
	2.1.3. The superclass of the new Code Smell class
	2.1.4. The code of the new Code Smell class

	2.2. Register the new Code Smell
	2.2.1. Register the new Code Smell Type
	2.2.2. Add the new Code Smell to semantic problem related map
	2.2.3. Register the new Problem Type Preference
	2.2.4. Initialize the preference of the Code Smell
	2.2.5. Refresh Markers Preference Page

	2.3. Refresh Titanium documentation

	Chapter 3. Titanium metrics
	3.1. Overview
	3.2. Metrics
	3.3. MetricData
	3.4. ModuleMetricWrapper
	3.5. MetricsView
	3.6. TopRiskView
	3.7. Interaction with the titan designer

	Chapter 4. Graph generation and display
	4.1. The generation of graphs on the UI
	4.2. The generation of graph on the headless interface
	4.3. How graph data is obtained?
	4.3.1. Obtaining data for module graph
	4.3.2. Obtaining data for component graph

	Chapter 5. Graph clustering
	5.1. Algorithms
	5.1.1. Clustering by folder name
	5.1.2. Clustering using regular expressions
	5.1.3. Clustering by module name
	5.1.4. Automatic clustering

	5.2. Running the algorithms
	5.3. Connection with TITAN designer

	Chapter 6. Titanium DAG layout algorithm
	6.1. Basic idea
	6.2. Versions
	6.3. Display

	Chapter 7. Searching for parallel paths and cycles
	7.1. Finding parallel paths
	7.2. Finding circles

	Chapter 8. Code smell table merging
	8.1. Algorithm
	8.2. Limitation

	Chapter 9. References

